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a b s t r a c t

Decision makers in drought-prone regions of the world and in international organizations responsible
for drought relief require advance information, preferably on the decadal timescale, of future hydro-
meteorological conditions. Focusing on Southern Africa (SA), a region subject to droughts, we used
indices of four decadal climate variability phenomena, statistically associated with Self-calibrating
Palmer Drought Severity Index (SC-PDSI), hindcast/forecast by the MIROC5 Earth System Model from
1961 to 2019–2020, in a statistical prediction system (SPS) to assess SC-PDSI predictability. The
SA-averaged correlation coefficient between hindcast and observations-based SC-PDSI increased from
0.2 in the 1980s to 0.33 in the 2001 to 2009–2010 period; grid point correlations within SA increased
from 0.4 to over 0.7 during the last 30 years. The MIROC5 – SPS system forecasts that SA may experience
a moderate drought from 2014 to 2016, followed by a wet period around 2019. These hydrologic event
forecasts are predicated on the absence of major low-latitude volcanic eruptions during the prediction
period.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Multiyear to decadal hydrologic cycles (DHCs), with dry and
wet parts, affect infrastructure, electricity generation, river naviga-
tion, recreation, urban water systems, crop production, pasture
and range conditions, livestock production and health, ecological
integrity, and regional and national economies (e.g., Mehta et al.,
2013a). Recognition by decision-makers of the increasing societal
consequences of DHCs has prompted legislation at the local, state
and national levels encouraging water management and use
efficiency. Floods cause loss of life and property in coastal regions
and low-lying lands, and cause public health hazards that threaten
the lives of survivors. However, the effects of multiyear to decadal
droughts are particularly dramatic, resulting in billions of dollars
in crop losses around the world annually. Droughts affect more
people worldwide than any other natural hazard (Wilhite,
2000). Shortages of water for drinking and irrigation, consequent

reductions in food production, and other stresses due to drought
contribute to social and political strife, civil wars, and international
conflicts (Gleick, 1993; Cooley et al., 2013). The negative conse-
quences of long-duration droughts will intensify as growing
numbers of humans and domesticated animals increase demands
on available water supplies. The Final Declaration2 of the recent
United Nations sponsored High-level Meeting on National Drought
Policy recognizes the need for and provision of drought informa-
tion to affected countries and regions, and for help in the
development of national drought policies. In addition to the need
for information in times of immediate drought emergency, plan-
ning for water, food, energy, and urban infrastructure develop-
ment would benefit greatly from reliable information on prospects
for wet and dry periods extending two or more decades into the
future. If skillful forecasts of this kind are to be possible, the causes
of DHCs must be better understood.

A substantial body of research has emerged in the last two
decades, focused on understanding causes and mechanisms of
decadal climate variability (DCV) (Meehl et al., 2009; Murphy
et al., 2009) and its influences on terrestrial hydrology. Several DCV
phenomena – the Pacific Decadal Oscillation (PDO) (Mantua et al.,
1997; Minobe, 1997), tropical Atlantic Sea-surface Temperature
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(SST) gradient variability (TAG) (Houghton and Tourre, 1992;
Mehta and Delworth, 1995; Chang et al., 1997; Mehta, 1998), West
Pacific Warm Pool Variability (WPWP) (Wang and Mehta, 2008),
and decadal variability of El Niño-La Niña cycles (Balmaseda et al.,
1995; Power et al., 1999; An and Wang, 2000; Kestin et al., 1998) –
have been identified in observational records and associated with
the occurrence of DHCs on land (Mehta, 1998; Nigam et al., 1999;
Hidalgo, 2004; McCabe et al., 2004; Meehl and Hu, 2006; Schubert
et al., 2009; Mehta et al., 2011). While simulation experiments
with global Earth System Models (ESMs) have substantially clar-
ified and reproduced the hypothesized role of DCV phenomena in
DHCs in some regions of the world (Schubert et al., 2009), skillful
predictions of DCV influences on DHCs remain elusive.

Despite problems in understanding and prediction of DCV, but
encouraged by initial decadal climate predictability studies with
ESMs (Latif et al., 2006; Smith et al., 2007; Keenlyside et al., 2008;
Pohlmann et al., 2009), the World Climate Research Program
organized the Coupled Model Intercomparison Project 5 (CMIP5)
to assess the ability of the current generation of ESMs used in
climate and impacts assessments by the Inter-Governmental Panel
on Climate Change to simulate and hindcast (retrospectively
forecast) decadal climate. Significant and substantial hindcast skill
has been found in SSTs averaged in ocean basins (Mehta et al.,
2013b), as well as in SST indices associated with DCV phenomena
with multiyear to decadal lead times in decadal hindcast runs of
several ESMs made under CMIP5 (Mehta et al., 2014). One
consideration, however, is that, in CMIP5 experiments, major
low-latitude volcanic eruptions have been found to influence SSTs;
actually, the eruptions are one of the sources of decadal SST
hindcast skill due to the radiative influence of ejected materials
on low-latitude, upper-ocean heat budget and SSTs, and the
subsequent slow recovery of the SSTs towards their pre-eruption
state (Mehta et al., 2013b, 2014). In the real world, however,
volcanic eruptions are not yet predictable. Therefore, their effects
on the climate system can only be predicted ex post facto. Never-
thless, to exploit the degree of prediction skill demonstrated, we
have developed a statistical prediction system (SPS) for rainfall,
temperature, drought index, and other features of DHCs on land.
An application of the SPS for DHC prediction and assessing its
accuracy in hindcasting DHCs in Southern Africa, a major drought-
prone region of the world, is described in this paper as a case
study. As described later, DHCs in Southern Africa show moderate
to high correlations with some of the DCV indices, and atmo-
spheric conditions associated with positive and negative phases of
DCV indices are physically consistent with DHC variability.

2. Material and methods

Two sets of core decadal prediction experiments are conducted
under CMIP5 (Meehl et al., 2009). The first set is a series of 10-year
hindcasts starting approximately in 1960, 1970, 1980, 1990, and
2000. The second is a series of 30-year hindcasts starting in 1960,
1980, and 2005, the last a combined hindcast–forecast. In both
sets, aerosol optical depths (AODs, including those due to volcanic
eruptions) and solar radiation are prescribed from past observa-
tions. Each experiment has a minimum ensemble size of three
members. These experiments are somewhat idealistic and
exploratory, especially in view of the well-known difficulty of
predicting volcanic eruptions well in advance.

In this case study, the dynamical component of our hybrid
prediction system is the Model for Interdisciplinary Research On
Climate 5 (MIROC5) from Japan. MIROC5 was selected for this case
study because our previous comparisons of decadal hindcast skills
of four CMIP5 ESMs showed that MIROC5 has the best overall skill
(Mehta et al., 2013b, 2014). The MIROC5 ESM is from Atmosphere

and Ocean Research Institute (University of Tokyo), National
Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology, Japan. It is a global model
with an equivalent resolution of approximately 1.411 longitude–
0.791 latitude. There are decadal hindcasts starting in 1961, 1971,
1981, 1991, and 2001, each running for 10 years after initialization.
Generally, ESMs are chaotic dynamical systems, making hindcasts/
forecasts made with them sensitive to initial conditions. Such
sensitivity can induce hindcast/forecast runs to diverge signifi-
cantly even if their initial conditions are infinitesimally close. This
sensitivity to initial conditions necessitates conducting parallel
hindcast/forecast runs of the same ESM initialized with slightly
different values of oceanic and/or atmospheric variables in the
ESM. Such a collection of runs is known as an ensemble and the
average of the ensemble is considered a more accurate hindcast/
forecast than any individual member of the ensemble. The spread
of member hindcasts/forecasts is a measure of the overall hind-
cast/forecast skill. There are six members in each MIROC5 decadal
hindcast ensemble. In the CMIP5 hindcast experiments, the
MIROC5 used an ocean-only initialization scheme (Tatebe et al.,
2012). In all CMIP5 experiments, Northern Hemisphere and South-
ern Hemisphere time series of aerosol optical depth (AOD), based
on observations (Sato et al. (1993) and Hansen et al. (2002) in the
MIROC5 ESM), were specified. These data sets provide zonal-
average, vertically-resolved AOD for visible wavelengths and
column-average effective radii of aerosols (Stenchikov et al.,
2006). The CMIP5 decadal hindcasts made with the MIROC5 ESM
form the dynamical component of the hybrid dynamical–statis-
tical prediction system described here.

In the statistical component of the hybrid prediction system,
we use four SST indices derived from MIROC5 decadal hindcasts –
Niño 3.4, PDO, TAG, and WPWP SST indices – as the predictors.
Precipitation, temperature, drought indices, and other weather/
climate variables are the predictands. We begin by estimating
correlation coefficients between monthly-, seasonal-, or annual-
average of an observed predictand (say, precipitation) and each
observed SST index, and between an observed predictand and
each SST index from MIROC5 ensemble-average hindcasts. If an
ESM is able to simulate the predictand reasonably well and
hindcast the predictor with significant skill, we expect that the
two correlation coefficient patterns may be similar to some extent.
If the two patterns are very different, the SPS would not be able to
hindcast the predictand with any skill. The SPS consists of the
following four steps.

Step 1: Multiple, linear regression of the observed predictand
(for example, a drought index) vs. the four SST indices from the
ESM based on the data from 1961 to 2010, but taking out the
1981 to 1990 data.
Step 2: Prediction of the drought index for the 1980s, using the
multiple, linear regression model constructed in Step 1 and SST
index hindcasts for the 1980s.
Step 3: Repeat Steps 1 and 2 for predicting drought index for
each decade.
Step 4: Cross-validation – estimate correlation coefficient between
observed and predicted drought index from 1961 to 2010.

We selected the Self-calibrating Palmer Drought Severity Index
(SC-PDSI; Wells et al., 2004) as an indicator of DHC. The original
PDSI is based upon a primitive water balance model (Palmer,
1965). The basis of the PDSI is the difference between the amount
of precipitation required to retain a normal water-balance level
and the amount of actual precipitation. The other parts of the PDSI
calculation account for climatic differences between locations and
seasons of the year. These computations attempt to scale the index
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values so that they fit 11 dryness/wetness categories (Palmer,
1965) and allow for comparisons across time and space. Empirical
constants for climatic characteristic and duration factors used in
the computation of the PDSI, which directly affect the spatial
comparability of the index, are based on averaging the values from
only a few locations in western Kansas and central Iowa repre-
senting a small number of climates. The SC-PDSI replaces the
empirically derived climatic characteristic and duration factors
with values based on the historical climatic data of each location,
thereby making the SC-PDSI more representative of the location
and its climate (Wells et al., 2004). We obtained monthly 2.51
longitude–2.51 latitude gridded SC-PDSI dataset from 1960 to 2010
from http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html. The
SC-PDSIs in many locations show drying or moistening trends
from 1960 to 2009–2010. Our hybrid system is used to predict
SC-PDSI before and after detrending in order to assess hindcast
skill due to multidecadal trends and DCV phenomena.

The “goodness of fit” (GoF) of the regression model to observed
data was estimated with the R-squared test (Press et al., 1992) and
the statistical significance of regression coefficients was tested
with the T-test (Press et al., 1992). In order to assess GoF, an
R-squared test was performed on each of the regressed combina-
tions of SC-PDSI and the four DCV indices. When the data of
interest are regressed linearly, the R-square test is simply the
square of the sample correlation coefficient between the outcome
(SC-PDSI) and the values being used to predict the outcome (DCV
index). The R-squared values can vary from 0 to 1, indicating how
well the regression line approximates the SC-PDSI data points –

that is the GoF. The R-squared value represents the percent of
variance in the values of SC-PDSI that can be explained by
knowing the value of a DCV index, with a value of 0 indicating
no variance explained and a value of 1 indicating all variance
explained. Therefore, the greater the R2 value, the more the
explained variance. In the present analysis, R-squared values

ranged from 0.5 to 0.7 over much of SA, indicating a satisfactory
model fit. In addition to the GoF test, a T-test was also performed
to determine statistical significance of the estimated regression
coefficients. The T-statistic is obtained by dividing the slope of the
regression line by the standard error. Values above or below 2.011
indicate a relationship significant at the 95% confidence level
between the independent variable (a DCV index) and the depen-
dent variable (SC-PDSI). The same area-averaging as the R-square
test for representing SA was applied to T-test values. It was found
that patterns of 95% significance were similar to those of the R2

values. At specific locations, this was also evident with all
significant T-test areas coinciding with R-square areas with the
latter values approximately greater than or equal to 0.5. This
coincidence showed that where the regression models had an
acceptable GoF, they also had statistically significant regression
coefficients encompassing SA. We interpreted these GoF and T-test
indicators as sufficiently indicative for this exploratory study.

The Monte Carlo technique (e.g., Wilks, 1995) was used to
estimate statistical significance of correlation coefficients. Hind-
cast skills as indicated by correlation coefficient and root-mean-
square error are described in this paper. Correlation coefficients
equal to or greater than 95% confidence limit are referred to as
statistically significant in this paper. Also, negative correlation
coefficients are referred to as negative skill.

We used the Extended Reconstructed SSTs (ERSST; Reynolds et
al., 2002) from 1961 to 2010 for comparison with hindcast SSTs.

3. Results

An application of the hybrid system to predict DHCs in SA is
described here; all or parts of 10 countries between approximately
141S and 351S latitudes are included as shown in Fig. 1. SA is
mostly semi-arid, with pronounced decadal variability in rainfall
(Tyson, 1986). SA is also projected to experience increased varia-
bility in rainfall and, possibly, reduced precipitation and increased
evaporation as a result of anthropogenic climatic change. With a
growing population3,4 and increasing demand for water from
numerous sectors, freshwater availability is a high-priority con-
cern for SA. In addition to decadal variability and a potential long-
term decrease in precipitation, water security in SA is further
complicated by high population densities in arid areas.5

Correlation coeffcients between observations-based SC-PDSI
and PDO, TAG, WPWP, and Niño 3.4 indices during the October
to March rainy season in SA in the 1961–1962 to 2009–2010 period
are shown in Fig. 2. The PDO (Fig. 2a) has significant correlations at
95% (�0.4 and lower) with the SC-PDSI in Southern Angola,
Southern Zambia, Namibia, Botswana, and South Africa, such that
dry (wet) periods are associated with a positive (negative) PDO
index. The TAG (Fig. 2b) is negatively correlated with SC-PDSI in
Angola, Zambia, and Malawi at 90% significance, implying that dry
(wet) periods are associated with a positive (negative) TAG index.
The WPWP variability (Fig. 2c) has correlations with SA SC-PDSI at
90% or lower significance. The Niño 3.4 index (Fig. 2d) has �0.4
and lower correlation coefficient in South Africa, Mozambique, and
Zimbabwe at 95% level and lower correlations elsewhere in SA,
implying that dry (wet) periods in these three countries are
associated with El Niño (La Niña) events. Thus, Fig. 2 shows that
SST indices of the four DCV phenomena are associated with
droughts and pluvials in large parts of SA with substantial
statistical significance. Correlations between hindcast DCV indices
and observations-based SC-PDSI show a reasonable similarity with

Fig. 1. The Southern Africa region of this study with two-letter country identifiers:
AO – Angola, ZM – Zambia, MW – Malawi, ZW – Zimbabwe, NA – Namibia, BW –

Botswana, MZ – Mozambique, SZ – Swaziland, LS – Lesotho, and ZA – South Africa.

3 http://www.aaas.org/international/ehn/waterpop/southaf.htm.
4 http://www.worldpopulationstatistics.com/africa-population-2013/.
5 www.unep.org/dewa/africa/publications/aeo-1/161.htm.
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those in Fig. 2. Therefore, hindcast DCV indices can be used in the
SPS to hindcast SC-PDSI.

Correlation coefficients between each of the four DCV indices,
and 500-hPa geopotential heights and 850 hPa winds from the
NCEP-NCAR reanalysis, averaged over the October–March period,
during 1961–2010 suggest (not shown) consistency of these
important atmospheric variables with the SC-PDSI correlation
coefficients shown in Fig. 2. For example, when the PDO index is
positive, there is an atmospheric wave train emanating from the
tropical Pacific Ocean region and there are 850 hPa wind anoma-
lies from interior land regions over SA, implying less atmospheric
water flux coming to SA and possibly resulting in a dry period as
implied by the negative SC-PDSI correlation in Fig. 2A. Generally
similar atmospheric and SC-PDSI anomalies are found during the
positive or El Niño phase of the Niño 3.4 index. During a positive
phase of the TAG index (tropical North Atlantic SST anomalies
warmer than tropical South Atlantic SST anomalies), the TAG SST
pattern is associated with geopotential height and 850 hPa wind
anomalies in the North and South Atlantic regions. Our results
show that when the TAG index is positive, there are strong
850 hPa wind anomalies from the South Atlantic Ocean towards
interior SA, especially Angola, Zambia, and parts of Malawi,
implying more rain as indicated by the negative SC-PDSI

correlation in these regions in Fig. 2B. In the positive phase of
the WPWP SST variability, there are anomalous northwesterly
850 hPa wind anomalies from the South Atlantic to SA, suggesting
more atmospheric water resulting in wetter SA, especially Bots-
wana and parts of South Africa, as indicated by the SC-PDSI
correlations in Fig. 2C.

The predicted and observations-based SC-PDSI anomalies,
averaged in SA over the October–March rainy season, from 1961
to 2009–2010 are shown in Fig. 3. Both sets of anomalies are
plotted as continuous time series. Since, in general, the SC-PDSI
anomaly at the end of one decadal hindcast may not be close to
the SC-PDSI anomaly at the beginning of the next decadal
hindcast, there are visible discontinuities at the decadal hindcast
boundaries. Fig. 3 shows that decadal variations in both after late
1970s–early 1980s are similar, especially the broad outlines of dry
and wet periods in smoothed versions of the time series before or
after detrending. Also, for almost the entire 50-year period, the
observations-based SC-PDSI anomalies are within the 71 stan-
dard deviation band estimated from hindcasts with 6 individual
members of the MIROC5 ensemble; and correlation coefficients
between observations-based and hindcast SC-PDSI over the 50-
year period are 0.39, 0.43, 0.46, and 0.53 (Fig. 3A-D, respectively).
Amplitudes of the observations-based and hindcast SC-PDSI are

Fig. 2. Correlation coefficients between SC-PDSI and sea-surface temperature (SST) indices of (A) PDO, (B) TAG, (C) WPWP, and (D) Niño 3.4 averaged in the October–March
rainy season in Southern Africa at 2.51 longitude–2.51 latitude grid spacing from 1961–1962 to 2009–2010. The threshold for 95% significance is 70.28. The observed SST
indices were calculated with the extended reconstructed SST (ERSST; Reynolds et al., 2002) data.
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generally similar after the late 1970s, although, as expected,
filtering and detrending (Fig. 3B–D) generally reduce their ampli-
tudes. Another interesting result is that decadal hindcasts initiated
at the beginning of each decade capture a dry period at the start,
followed by a wet period near the end, followed by yet another dry
period. Thus, the hindcasts after the late 1970s reproduce entire
DHCs reasonably well. Year-to-year variability, however, is repro-
duced less well in the hindcasts than is decadal variability due,
possibly, to the decadal character of PDO, TAG, and WPWP
manifestations. As Fig. 4 shows, the PDO predictability contributes
the most to predictability of the SC-PDSI, especially the phase.
Niño 3.4 is next in predictive power, with minor contributions
made by TAG and WPWP. This is also confirmed by predictions
made by simple linear regression models based on only a single
DCV predictor.

The apparent improvement in hindcasts over the 50 year
period is also reflected in grid point correlation coefficients and
root-mean-square (RMS) differences between observations-based
and hindcast SC-PDSI anomalies shown in Fig. 5. An increase in
correlation coefficients and their statistical significance, and
decrease in RMS differences are also noted, especially after the
1980s, with the 1991–2000 (Fig. 5G and H) and 2001 to 2009–
2010 (Fig. 5I and J) results showing significant and substantial
correlations, and generally low RMS differences over almost the
entire SA region. With a record of improving hindcast skill for the
period following the 1980s, we used the MIROC5 hindcast–fore-
cast for the 2006–2036 period to predict the evolution of SC-PDSI
from 2011 to 2020 (Fig. 3). The hybrid system predicted a slightly
wet period in 2011–2012, followed by a dry period in 2014–2016
and a wet period at the end of the decade. This forecast, of course,

Fig. 3. Actual (black line) and ensemble-average hindcast (red line) from 1961 to 2009–2010 and forecast (blue line) SC-PDSI from 2010–2011 to 2019–2020, averaged over
the October–March rainy season in Southern Africa. Cross-hatched area shows 71 standard deviation of hindcast/forecast SC-PDSI. Decadal hindcasts/forecasts of four sea-
surface temperature (SST) indices of decadal climate variability – PDO, TAG, WPWP, and Niño 3.4, made with a six-member ensemble of the MIROC5 Earth System Model,
were used in a cross-validated statistical prediction system to hindcast/forecast SC-PDSI. Start years of decadal hindcasts are shownwith vertical dashed lines; the 2010–2011
to 2019–2020 forecasts were initiated in 2001. Results: (A) without detrending or smoothing, (B) after removing a linear trend spanning 1961–2010, (C) without detrending,
but after smoothing by a three-year moving-window filter and (D) after removing a linear trend spanning 1961 to 2009–2010 and smoothing by a three-year moving-
window filter. 1961 refers to the October 1961–March 1962 averaging time.

Fig. 4. Actual (heavy black line) and ensemble-average hindcast (gray bars) self-calibrating Palmer drought severity index (SC-PDSI) from 1961 to 2009–2010, and SC-PDSI
forecast (blue bars) from 2010–2011 to 2019–2020, averaged over the October–March rainy season in Southern Africa. Contributions to hindcasts/forecasts of SC-PDSI
anomalies by PDO, TAG, WPWP, and Niño 3.4 are also shown as per the legend in the box. Start years of decadal hindcasts are shown with vertical dashed lines; the 2010–
2011 to 2019–2020 forecasts were initialized in 2006.
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is subject to the caveat that any major low-latitude volcanic
eruption during this period might influence DHC in SA.

4. Discussion and conclusions

The moderate success of the hybrid system in hindcasting DHCs
in SA, as evidenced in the SC-PDSI, suggests that such cycles in this
region are indeed forced largely by DCV phenomena. The moder-
ate skill of the MIROC5 ESM in hindcasting the occurrence of the
four DCV phenomena, especially PDO, explains the success in
hindcasting DHCs during the past 3–4 decades. We speculate that
improved observations to initialize ESMs, especially ocean obser-
vations, may be responsible for progressively improving hindcast
skill in the 1960–2010 period in the CMIP5 ESMs as well as
improvements in the ESMs themselves. It is remarkable that
hindcast skill is not limited to the time immediately following
MIROC5 initialization, but in some of the decades extends to the
end of the 10-year hindcasting period, providing substantial skill

over entire DHCs. While cognizant of the role of volcanic eruptions
in determining decadal hindcast skill, the reasonably successful
multidecadal record of decadal SC-PDSI hindcasting presented
here encourages us to expect that the forecast from 2013 to
2020 will also be skillful.

Although preliminary results of this study are very encoura-
ging, they must be viewed with caution because the CMIP5
decadal hindcast experiments use estimates of ejected volcanic
materials and solar variability during hindcast periods that would
not be available in making actual forecasts. An encouraging
beginning, however, has been made on the long sought-after goal
of decadal drought forecasts. While the climate modeling and
prediction community further develop the ESMs and techniques
for decadal drought prediction, it is vitally important that the
climate services community develops models and techniques for
prediction of societal impacts of multiyear to decadal droughts,
and mechanisms and organizations for continuous interactions
with stakeholders who would be the ultimate beneficiaries of
decadal drought and impacts prediction.

Fig. 5. Correlation coefficients and root-mean-square differences between actual and hindcast SC-PDSI from 1961 to 2009–2010, averaged over the October–March rainy
season at 2.51 longitude–2.51 latitude grid spacing in Southern Africa. Color scales are shown below the figures. The thresholds for significance of correlation coefficients are
70.63 for 95%, 70.55 for 90%, 70.49 for 85%, 70.44 for 80%, and 70.40 for 75%.
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